TURUNAN
FUNGSI ( DEFERENSIAL)
KONSEP TURUNAN
Konsep
turunan awal mulanya dikembangkan dalam bidang matematika dan fisika, seperti
tingkat perubahan dari suatu fungsi, atau laju kecepatan suatu benda yang
bergerak. Akan tetapi, dewasa ini penerapannya berkembang kebidang lain seperti
ilmu ekonomi.
Sebuah
roket membawa satelit yang akan diorbitkan diluar angkasa, misalkan jarak s
yang ditempuh setelah t detik adalah s = 10 t2 m , dari imformasi
ini dapat kita hitung kecepatan roket
saat t = 1 detik, saat t = 2 detik , dan seterusnya. Dengan mempelajari turunan
fungsi aljabar pertanyaan ini dapat kita jawab.
PENGERTIAN TURUNAN FUNGSI
Definisi turunan : Fungsi f : x → y atau y = f (x) mempunyai turunan yang dinotasikan y’ = f’(x) atau dy = df(x) dan di definisikan :
dx dx
y’ = f’(x) = lim f(x + h) – f(x) atau dy = lim f (x +∆x) – f(x)
h→0 h dx h→0 h
Notasi kedua ini disebut notasi Leibniz.
Contoh 1:
Tentukan turunan dari f(x) = 4x – 3
Jawab:
f(x) = 4x – 3
f( x + h) = 4(x + h) – 3
= 4x + 4h -3
Contoh 2:
Tentukan turunan dari f(x) = 3x2
Jawab :
f(x) = 3x2
f(x + h) = 3 (x + h)2
= 3 (x2 + 2xh + h2)
= 3x2 + 6xh + 3h2
Sehingga :
Latihan
Dengan definisi di atas tentukan nilai turunan berikut:
- f(x) = 6 – 2x
- f(x) = 5x2 +2x
- f(x) = 2x3
RUMUS-RUMUS TURUNAN
1. Turunan f(x) = axn adalah f’(x) = anxn-1 atau = anxn-1
2. Untuk u dan v suatu fungsi,c bilangan Real dan n bilangan Rasional berlaku
a. y = ± v → y’ = v’ ± u’
b. y = c.u → y’ = c.u’
c. y = u.v → y’ = u’ v + u.v’
d.
e. y = un → y’ = n. un-1.u’
Contoh:
Soal ke-1
Jika f(x) = 3x2 + 4 maka nilai f1(x) yang mungkin adalah ….
Pembahasan
f(x) = 3x2 + 4
f1(x) = 3.2x
= 6x
Soal ke-2
Nilai turunan pertama dari: f(x) = 2(x)2 + 12x2 – 8x + 4 adalah …
Pembahasan
f(x) = 2x3 + 12x2 – 8x + 4
f1(x) = 2.3x2 + 12.2x – 8
= 6x2 + 24x -8
Soal ke-3
Turunan ke- 1 dari f(x) = (3x-2)(4x+1) adalah …
Pembahasan
f(x) = (3x-2)(4x+1)
f(x) = 12x2 + 3x – 8x – 2
f(x) = 12x2 – 5x – 2
f1(x) = 24x – 5
Soal ke- 4
Jika f(x) = (2x – 1)3 maka nilai f1(x) adalah …
Pembahasan
f(x) = (2x – 1)3
f1(x) = 3(2x – 1)2 (2)
f1(x) = 6(2x – 1)2
f1(x) = 6(2x – 1)(2x – 1)
f1(x) = 6(4x2 – 4x+1)
f1(x) = 24x2 – 24x + 6
Soal ke- 5
Turunan pertama dari f(x) = (5x2 – 1)2 adalah …
Pembahasan
f(x) = (5x2 – 1)3
f1(x) = 2(5x2 – 1) (10x)
f1(x) = 20x (5x2 – 1)
f1(x) = 100x3 – 20x
Soal ke- 6
Turunan pertama dari f(x) = (3x2 – 6x) (x + 2) adalah …
Pembahasan
f(x) = (3x2 – 6x) (x + 2)
Cara 1:
Misal : U = 3x2 – 6x
U1 = 6x – 6
V = x + 2
V1 = 1
Sehingga:
f’(x) = U’ V + U V’
f1(x) = (6x – 6)(x+2) + (3x2+6x).1
f1(x) = 6x2 + 12x – 6x – 12 + 3x2 – 6x
f1(x) = 9x2 – 12
Cara 2:
f(x) = (3x2 – 6x) (x + 2)
f1(x) = 3x-3+6x2 – 6x3 – 12x
f1(x) = 9x2+12x –12x – 12
f1(x) = 9x2 – 12
MODUL STATISTIK DAN PELUANG, compiled by: ENDRAWITA, S.Pd
Latihan soal.
Tentukan turunan dari
TURUNAN FUNGSI TRIGONOMETRI
Dengan menggunakan definisi turunan kita bias menentukan turunan dari :
- f(x) = sin x
Yaitu :
- f(x) = cos x
Yaitu :
Jadi diperoleh rumus turunan fungsi trigonometri :
1. a. f(x) = sin x → f’ (x) = cos x
b. f(x) = cos x → f’ (x) = - sin x
2. a. f(x) = sin (ax + b) → f’(x) = a cos (ax + b )
b. f(x) = cos (ax + b) → f’(x) = - a sin (ax + b )
dan jika u suatu fungsi maka:
3. a. f(x) = sin u → f’(x) = u’ cos u
b. f(x) = cos u → f’(x) = - u’ sin u
Contoh :
Tentuka turunan dari:
a. f(x) = 3 sin x + 2 cos x
b. f(x) = sin (5x – 2)
c. f(x) = tan x
jawab:
a. f(x) = 3 sin x + 2 cos x
f’(x) = 3 cos x - 2 sin x
b. f(x) = sin (5x – 2)
f’ (x) = 5 cos (5x – 2 )
c. f(x) = tan x =
missal : u = sin x → u’ = cos x
v = cos x → v’ = - sin x
Latihan soal :
Tentukan turunan dari fungsi berikut :
DALIL RANTAI UNTUK MENENTUKAN TURUNAN
Apabila y = f(g(x)) maka y’ = f’ (g(x)). g’(x)
Dari rumus y = f(g(x)) → y’ = f’ (g(x)). g’(x)
Jika g(x) = u→ g’ (x) = dan f(g(x)) = f(u) → y = f(u) → = f’(u) = f’(g(x))
Maka f’(x) = f’ (g(x)). g’(x) dapat dinyatakan ke notasi Leibniz menjadi
Dan bentuk tersebut dapat dikembangkan jika y = f ( u(v)) maka:
Contoh:
Dengan notasi Leibniz tentukan turunan dari :
Jawab:
b.
Latihan soal :
P
BalasHapus